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Introduction

Motivation

Households make financial decisions affected by various frictions

• Costly search in auto loan markets

• Inaction when having refinancing opportunities

• Unaware of total borrowing costs of payday lending

One fundamental yet often overlooked friction: language frictions
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Households make financial decisions affected by various frictions

One fundamental yet often overlooked friction: language frictions
• Language barriers faced by borrowers with limited English proficiency (LEP)
• Nearly one in ten working age adults in the US is LEP
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Introduction

This Paper

Question: How do language frictions affect household financial decisions?

• Do language frictions affect access to credit?

• How do language frictions affect the price of credit?

• Does reducing language frictions affect the quality of credit?

Setting: the U.S. mortgage market

Data challenge: who are LEP borrowers?

Identification challenge: isolate the role of language

Preview of results: reducing language frictions leads to
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Introduction

This Paper

Question: How do language frictions affect household financial decisions?

Setting: the U.S. mortgage market

Data challenge: who are LEP borrowers?

• Survey data: National Survey of Mortgage Originations (NSMO)

• Apply machine learning to predict LEP status

=⇒ Document significant descriptive differences

Identification challenge: isolate the role of language
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Introduction

This Paper

Question: How do language frictions affect household financial decisions?

Setting: the U.S. mortgage market

Data challenge: who are LEP borrowers?

Identification challenge: isolate the role of language

• Natural experiment: phased rollout of translated mortgage documents by FHFA

• Triple-difference: LEP × Hispanic × Post

=⇒ Estimate the causal effect of language frictions

Preview of results: reducing language

frictions leads to
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Introduction

This Paper

Question: How do language frictions affect household financial decisions?

Setting: the U.S. mortgage market

Data challenge: who are LEP borrowers?

Identification challenge: isolate the role of language

Preview of results: reducing language frictions leads to

• Better application experience

• Lower borrowing costs

• Expanded access to conventional loans

• No deterioration of mortgage performance
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Data

Data Sources

National Survey of Mortgage Originations (NSMO) 2013-19

• Demographic characteristics

• Perceptions and experiences in the mortgage market (survey response)

• Contract and performance variables (administrative sources)

• LEP status at the individual level
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Data

Assigning LEP Status in the Survey

About 10% are LEP borrowers
3 / 19



Data

Data Sources

National Survey of Mortgage Originations (NSMO) 2013-19

• Demographic characteristics

• Perceptions and experiences in the mortgage market (survey response)

• Contract and performance variables (administrative sources)

• LEP status at the individual level

Home Mortgage Disclosure Act (HMDA) 2011-2019

• County-level outcomes: application denial rate, origination volume

American Community Survey (ACS) 2011-2019

• LEP share at the county level

• County-level characteristics: population, median income, racial composition
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Stylized Facts

Stylized Facts about LEP Borrowers: Mortgage Application

• Before application: know less about the mortgage market
≈ 60% of the differences between borrowers with a college degree and those without

• During application: encounter more problems

• After application: less familiar with their own mortgage contracts
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Stylized Facts

Stylized Facts about LEP Borrowers: Mortgage Application

• Before application: know less about the mortgage market
≈ 60% of the differences between borrowers with a college degree and those without

• During application: encounter more problems
5 pp more likely to redo mortgage paperwork

• After application: less familiar with their own mortgage contracts
≈ 2X more likely to be unsure if their own mortgage is an ARM
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Stylized Facts

Stylized Facts about LEP Borrowers: Mortgage Outcomes
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Stylized Facts

Stylized Facts about LEP Borrowers: Mortgage Outcomes
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Causal Effect

Policy Shock: FHFA Language Access Plan

• Lenders used to face compliance risks (e.g., fair lending risks)

• FHFA provides an online centralized collection of translated mortgage documents

• Phased rollout: Spanish translations in 2018, Chinese translations in 2019
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Causal Effect

Google Trends: “Mortgage Translation” and “Mortgage”
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Causal Effect

Empirical Strategy: Triple-Difference
Dependent variable: 1(redo paperwork) H0: the decrease is smaller than 5 pp
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Causal Effect

Causal Effect of Language Frictions on the Intensive Margin

Effect on access to credit (intensive)?

• Encounter fewer problems: redo mortgage paperwork ↓ 14 pp
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Causal Effect

Effect on Mortgage Rate: Graphical Evidence

H0: pre- and post-policy average interest rates are the same
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Causal Effect

Causal Effect of Language Frictions on the Intensive Margin

Effect on access to credit (intensive)?

• Encounter fewer problems: redo mortgage paperwork ↓ 14 pp

Effect on the price of credit?

• Lower interest rates: ↓ 13 bps, save $19 per month and $1600 after 8 years
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Causal Effect

One Potential Mechanism of the Price Effect: Borrower Search

H0: pre- and post-policy distributions are the same
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Causal Effect

Additional Results on the Intensive Margin

Data limitations of the survey data

• No lender or location information

• No up-front costs (e.g., discount points)

Address these concerns in three steps:

1. A loan-level data set: HMDA+

2. Use machine learning to predict LEP status in HMDA+

3. Run triple-difference regressions in HMDA+

Revisit the price effect

• Interest rate decreases by at least 5 bps

• Lower total borrowing costs (interest rate ↓ + net discount points →)
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Additional Results on the Intensive Margin

Data limitations of the survey data

Address these concerns in three steps:

1. A loan-level data set: HMDA+

2. Use machine learning to predict LEP status in HMDA+

• Solve a binary classification problem

• Training sample: micro-level American Community Survey

• 99% accuracy in the test sample

3. Run triple-difference regressions in HMDA+

Revisit the price effect

• Interest rate decreases by at least 5 bps
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Data limitations of the survey data

Address these concerns in three steps:

1. A loan-level data set: HMDA+

2. Use machine learning to predict LEP status in HMDA+

3. Run triple-difference regressions in HMDA+

• Misclassification brought by ML → Attenuation bias if ML performance is not too bad

• Use ML performance to bound measurement error

• Recover the lower bound of the average treatment effect on the treated (ATT)

Revisit the price effect

• Interest rate decreases by at least 5 bps

• Lower total borrowing costs (interest rate ↓ + net discount points →)
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Causal Effect

LEP Consumers Excluded From the Mortgage Market?

Estimate the effect on credit access on the extensive margin

• Data: county-level HMDA

• Sample: conventional purchase loans

• Regression: difference-in-differences

Yct = α+ βDct + γXct + δc + δst + ϵct

▶ c , s, t: county c , state s, year t
▶

Dct =

 0, if t ≤ 2017
Hispanic LEP sharec , if t = 2018
Hispanic LEP sharec + Chinese LEP sharec , if t = 2019
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Causal Effect

Causal Effect of Language Frictions on the Extensive Margin

Dependent variable
# Applications

(10K)
Share of

incomplete app.
Denial rate

# Originations
(10K)

(1) (2) (3) (4)

LEP share × Post 0.124** -0.052** -0.105** 0.092**
(0.058) (0.023) (0.042) (0.042)

Sample mean 0.083 0.117 0.177 0.061

Observations 27,605 27,605 27,605 27,605
County FEs ✓ ✓ ✓ ✓
Year × State FEs ✓ ✓ ✓ ✓
Additional controls ✓ ✓ ✓ ✓

Application incomplete and denial rate ↓ by 5 pp and 11 pp
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Causal Effect of Language Frictions on the Extensive Margin

Dependent variable
# Applications

(10K)
Share of

incomplete app.
Denial rate

# Originations
(10K)

(1) (2) (3) (4)

LEP share × Post 0.124** -0.052** -0.105** 0.092**
(0.058) (0.023) (0.042) (0.042)

Sample mean 0.083 0.117 0.177 0.061

Observations 27,605 27,605 27,605 27,605
County FEs ✓ ✓ ✓ ✓
Year × State FEs ✓ ✓ ✓ ✓
Additional controls ✓ ✓ ✓ ✓

4 pp ↑ in the local share of LEP people =⇒ + 50 applications and 37 originations

16 / 19



Causal Effect

Flexible Difference-in-Differences Estimates

17 / 19



Causal Effect

Real Effect on Homeownership?

Dependent variable # Conventional # FHA # All Homeownership
(1) (2) (3) (4)

LEP share × Post 0.089** -0.047 0.025 -0.029
(0.044) (0.030) (0.046) (0.028)

Observations 25,224 25,224 25,224 25,224
County FEs Yes Yes Yes Yes
Year × State FEs Yes Yes Yes Yes
Additional controls Yes Yes Yes Yes

Substitution between conventional and FHA loans
=⇒ no increase in total purchase loan originations
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Conclusion

Conclusion

Main takeaway: Reducing language frictions can lead to

• a streamlined application process

• lower borrowing costs

• increased availability of conventional loans

• no deterioration of credit quality

Policy implications

• Reduce compliance risks for financial institutions

• A cost-effective policy

• More work is needed to improve homeownership
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